Quelle est la Différence entre moyenne et médiane ?

Quelle est la Différence entre moyenne et médiane ?
15 / 100 SEO Score

 

La tendance centrale implique la tendance des points de données à se regrouper autour de sa valeur centrale ou centrale. Les deux mesures de tendance centrale les plus couramment utilisées sont la moyenne et la médiane. La moyenne est définie comme la valeur «centrale» de l’ensemble de données donné, tandis que la médiane est la valeur «la plus moyenne» dans l’ensemble de données donné

 

 

Une mesure idéale de la tendance centrale est une mesure clairement définie, facile à comprendre, simplement calculable. Il devrait être basé sur toutes les observations et le moins affecté par les observations extrêmes présentes dans l’ensemble de données.

Les gens opposent souvent ces deux mesures, mais le fait est qu’elles sont différentes. Cet article souligne spécifiquement les différences fondamentales entre moyenne et médiane. Regarde.

 

Contenu: Moyenne vs médiane

 

  1. Tableau de comparaison
  2. Définition
  3. Différences Clés
  4. Exemple
  5. Conclusion

Tableau de comparaison

BASE DE COMPARAISON moyenne médiane
Sens La moyenne fait référence à la moyenne simple de l’ensemble de valeurs ou de quantités donné. La médiane est définie comme le nombre du milieu dans une liste de valeurs.
Qu’Est-ce que c’est? C’est une moyenne arithmétique. C’est la moyenne de position.
Représente Centre de gravité de l’ensemble de données Centre de gravité de l’ensemble
de données Point médian de l’ensemble de données
Applicabilité Distribution normale Distribution asymétrique
Les valeurs aberrantes La moyenne est sensible aux valeurs aberrantes. La médiane n’est pas sensible aux valeurs aberrantes.
Calcul La moyenne est calculée en additionnant toutes les observations puis en divisant la valeur obtenue par le nombre d’observations. Pour calculer la médiane, le jeu de données est classé par ordre croissant ou décroissant. La valeur située au milieu du nouvel ensemble de données est la médiane.

 

 

Définition de moyenne

 

La moyenne est la mesure largement utilisée de la tendance centrale, définie comme la moyenne de l’ensemble des valeurs. Il représente le modèle et la valeur la plus courante de la plage de valeurs donnée. Il peut être calculé à la fois en séries discrètes et continues.

La moyenne est égale à la somme de toutes les observations divisée par le nombre d’observations dans l’ensemble de données. Si la valeur assumée par une variable est égale, sa moyenne sera également la même. La moyenne peut être de deux types, la moyenne de l’échantillon (x̅) et la moyenne de la population (µ). Il peut être calculé avec la formule donnée:

Moyenne arithmétique :signifier où Ʃ = lettre grecque sigma, désigne la somme de .. ‘
n = nombre de valeurs
Pour les séries discrètes : série discrète moyenne où, f = fréquence
Pour les services continus :série continue où d = (XA) / C
A = moyenne supposée
C = diviseur commun

 

Définition de la médiane

 

La médiane est une autre mesure importante de la tendance centrale, utilisée pour diviser la valeur en deux parties égales, à savoir la moitié supérieure de l’échantillon, la population ou la distribution de probabilité de la moitié inférieure. C’est la valeur la plus au milieu, qui est obtenue lorsque les observations sont triées dans un ordre spécifique, croissant ou décroissant.

 

Principales différences entre la moyenne et la médiane

 

Les différences significatives entre la moyenne et la médiane sont fournies dans l’article ci-dessous:

En statistique, une moyenne est définie comme la moyenne simple de l’ensemble de valeurs ou de quantités donné. La médiane est le nombre du milieu dans une liste de valeurs ordonnée.
Alors que la moyenne est la moyenne arithmétique, la médiane est la moyenne positionnelle. En substance, la position de l’ensemble de données détermine la valeur de la médiane.

La moyenne indique le centre de gravité de l’ensemble de données, tandis que la médiane met en évidence la valeur la plus moyenne de l’ensemble de données.
La moyenne convient aux données distribuées normalement. À l’opposé, la médiane est la meilleure lorsque la distribution des données est asymétrique.
La moyenne est fortement affectée par la valeur extrême qui n’est pas dans le cas d’une médiane.
La moyenne est calculée en additionnant toutes les observations puis en divisant la valeur obtenue par le nombre d’observations; le résultat est moyen. Contrairement à la médiane, le jeu de données est organisé par ordre croissant ou décroissant. La valeur située exactement au milieu du nouvel ensemble de données est la médiane.

Exemple
Trouver la moyenne et la médiane de l’ensemble de données donné:
58, 26, 65, 34, 78, 44, 96
Solution: Pour calculer la moyenne, vous devez diviser la somme des observations avec le nombre d’observations,

signifier Moyenne = 57,28
Pour calculer la médiane, tout d’abord, organisez la série en une séquence, c’est-à-dire de la plus faible à la plus élevée,
26, 34, 44, 58, 65, 78, 96

médian où n = nombre d’observations

Médiane = 4 ème terme = 58

Conclusion

Après avoir passé en revue les points ci-dessus, nous pouvons dire que ces deux concepts mathématiques sont différents. La moyenne arithmétique ou moyenne est considérée comme la meilleure mesure de la tendance centrale car elle contient toutes les caractéristiques d’une mesure idéale, mais elle présente l’inconvénient que les fluctuations de l’échantillonnage influent sur la moyenne.

De la même manière, la médiane est également définie de manière claire et facile à comprendre et à calculer, et la meilleure chose à propos de cette mesure est qu’elle n’est pas affectée par les fluctuations de l’échantillonnage, mais le seul inconvénient de la médiane est qu’elle n’est pas basée sur tous. observations. Pour la classification open end, la médiane est généralement préférable à la moyenne.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *